Exam 1

October 29, 2012
90 minutes

Problem 1 (25 Points)

The brass cylinder ($E=105 \mathrm{GPa}$ and $\mathrm{v}=0.33$) shown below has a height of 135 mm and a diameter of 85 mm . It is subject to the axial loading shown, ($\sigma_{y}=-58 \mathrm{MPa}$).
a) Determine the change in height and the change in volume of the brass cylinder
b) Determine the change in volume and the bulk modulus, K , of the cylinder if the loading is hydrostatic with $\sigma_{x}=\sigma_{y}=\sigma_{z}=-70 \mathrm{MPa}$.

Problem 2 (25 Points)

A steel alloy circular bar of diameter $d=25 \mathrm{~mm}$, and Length $L=3 m$ is subjected to an axial tensile force $P=60 \mathrm{kN}$ as shown below. The steel alloy has a stress-strain diagram which can be approximated as shown, and a Poisson's ratio, $\mathrm{v}=0.3$. Determine:
a) The Axial Deformation of the bar.
b) The change in diameter, d.
c) The change in volume, $\Delta \mathrm{V}$.
d) If the axial force is increase to $P=200 \mathrm{kN}$ and then released, find the permanent elongation of the bar.

Problem 3 (25 Points)

Two cylindrical rods, one steel ($\mathrm{E}=200 \mathrm{GPa}$) and the other brass ($\mathrm{E}=105 \mathrm{GPa}$), are joined at C and restrained by rigid supports at A and E. For the loading shown, determine:
a) The reactions at A and E
b) The deflection of point C

Dirnensions in min

Problem 4 (25 Points)

Bar $A B$ in the system shown below is to be considered rigid. Bar C is made of steel ($\mathrm{E}=$ 200GPa and $A=600 \mathrm{~mm}^{2}$) and post D is made of brass ($E=100 \mathrm{GPa}$ and $A=2000 \mathrm{~mm}^{2}$). Determine the load P that will produce an axial stress of 30 MPa in post D.

